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0 Introduction

0.1 What this course is about

In this course, we will give an introduction to the mathematical theory of two-
person perfect-information games of infinite length. The systematic study of
mind games such as chess, checkers and Go was begun in 1913 by Ernst Zermelo
and carried on by various other mathematicians. Of course, real-life games
always have a finite length, i.e., the games are bound to end after some finite
number of turns—otherwise it would not be possible to play them. However,
once we have a mathematical formalism that works for finite games, we can
easily extend it to include infinite games, that is, games similar to chess, Go
etc., but where the number of moves is infinite: the game goes on “forever”, so
to say.

Why would anyone want to study such a thing? Even if it is mathematically
feasible, it might look like a theory of infinite games would have no applications
whatsoever. Surprisingly, this is far from being true, and indeed the theory of
infinite games has remarkably many applications in various areas of logic and
pure mathematics, including, in particular, set theory, basic topology and the
study of the real number continuum.

Of course, the shift from finite to infinite games also involves a shift in per-
spective: we are no longer using a mathematical theory to study real-life games
(interesting in themselves), but rather creating or constructing new games, the
study of which may help us to understand fundamental mathematical objects.
The games change from being the subjects of research to being tools in the
study of other subjects.

We hope that this course will convey an appreciation for the importance and
usefulness of infinite games.

0.2 Notation and prerequisites

We will assume familiarity with basic mathematical notation and knowledge
of mathematical structures, in particular infinite sets, the set of all functions
from one set to another, etc. We assume that the readers know terms such
as “surjection”, “injection”, “transitive relation” and so on. We also assume
familiarity with the notions of cardinality of a set. We write |A| to denote the
cardinality of A.

Our main mathematical starting-point is the set of all natural numbers
{0, 1, 2, 3, . . . }, which we denote by ω. For a number n, ωn is the n-Cartesian
product of ω, i.e., ω × · · · × ω repeated n times. We will denote elements of
ωn by 〈x0, x1, . . . , xn−1〉, where xi is a natural number, and call these finite
sequences. For practical purposes, however, we will frequently identify a finite
sequence with a function f : {0, . . . , n − 1} −→ ω, so that if f ∈ ωn, we can
write f(m) to denote the m-th element of the sequence f . We will usually use
the letters s, t etc. for finite sequences. The empty sequence is denoted by 〈〉.
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The set of all finite sequences is denoted by

ω<ω =
⋃
n∈ω

ωn

and for s ∈ ω<ω, |s| is the length of s, i.e., |s| = n such that s ∈ ωn.
Generalizing this to an infinite Cartesian product, we have the set

ωω := {f : ω −→ ω}

So ωω is the set of all functions from the natural numbers to the natural numbers.
We can view such functions as infinite sequences of natural numbers, and for
that reason we shall sometimes use a notation like 〈0, 0, 0, . . . 〉, or 〈x0, x1, . . . 〉.
We will usually use the letters x, y etc. for elements of ωω.

If x ∈ ωω and n ∈ ω, then x � n denotes the initial segment of x of length n,
to be precise

x � n := 〈x(0), x(1), . . . , x(n− 1)〉

If s ∈ ω<ω and x ∈ ωω, then we say that s is an initial segment of x, denoted
by

s C x

if for all m < |s| we have s(m) = f(m), equivalently if x � |s| = s. For two finite
sequences s, t ∈ ω<ω, the concatenation of s and t, denoted by s_t, is defined
as expected: if |s| = n and |t| = m then

s_t := 〈s(0), s(1), . . . , s(n− 1), t(0), t(1), . . . , t(m− 1)〉

An equivalent definition is

s_t(i) :=

{
s(i) if i < n

t(i− n) if i ≥ n

for all i < n + m. By analogy, for s ∈ ω<ω and x ∈ ωω we define the concate-
nation of s and x by

s_x := 〈s(0), s(1), . . . , s(n− 1), x(0), x(1), . . . 〉

Any piece of notation not included in the list above will be defined as we go
along.
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1 Finite games

1.1 Our basic setting

We begin the story in the most natural place: the study of real-life, finite games.
We will present the general setting, derive a mathematical formalism and then
show how it applies to some concrete examples such as chess. Although this is
not the final objective of our study, it is nevertheless important to understand
how the paradigm of infinite games is developed out of the one for finite games.

We consider the following setting: there are two players, called Player I and
Player II, who are playing a turn-based mind game (say, with pieces on a board)
against each other. By convention, Player I is a male player whereas Player II
is female. Player I always starts the game by making some move, after which
Player II makes a move, and so they both take turns in playing the game. At
some point the game is finished and either Player I has won the game or Player
II has. For simplicity we only consider so-called zero-sum games, meaning that
exactly one of the two players wins the game, and there are no draws. In other
words

Player I wins a game if and only if
Player II loses the game, and vice versa.

As this is not the case with many two-player games, we must do a little bit of
tweaking: change the rules of each game so that a draw will signify a win for one
of the players (for example, a draw in chess is a win for black). This restriction
is necessary from a purely technical point of view, and later on we shall see that
this restriction is easily overcome and does not affect the kinds of games we can
model.

Our other main assumption is perfect information, which refers to the fact
that both Players I and II have complete access to and knowledge of the way
the game has been played so far.

Our framework includes such famous and popular mind games as chess,
checkers, Go and tic-tac-toe; and also a variety of less widely known games
(reversi, nine men’s morris or Go-moku are some other examples). Nevertheless,
many games do not fall into our framework. Specifically, we do not consider the
following:

1. Games that contain an element of chance, such as throwing a die or dealing
cards. For example, backgammon, poker, roulette etc. are not included.

2. Games in which two players take turns simultaneously (or so quickly fol-
lowing one another that they have no chance to react to the opponent’s
move), such as Rock-Paper-Scissors.

3. Games in which certain moves are only known to one player but hidden
from the other, such as Stratego.
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1.2 Chess

Let us start by a (still informal) discussion of the game of chess. As already
mentioned, we alter the rules of chess so that a draw is considered a win for
Black. It is clear that, with this condition, chess fulfills all our requirements:
there are two players—White and Black in this case—White starts and then
the players alternate in taking turns. At each stage, the players have perfect
information about the preceding moves. At the end, either White wins, or Black
wins, or there is a draw—which again means that Black wins.

Why is chess a finite game? The reason lies in the following simple rule: if
a position on the board is repeated three times, with the same player having to
go, then the game is automatically called a draw. The number of positions in
chess is finite: there are 64 squares, each can be occupied by at most one piece,
and there are 32 different chess-pieces, so there are at most 6433 positions. Thus
the game cannot take longer than 2 · 3 · 6433.

In fact, we could easily get a much smaller estimate if we took into account
how many pieces of each kind there are in chess, that some pieces are identical
and do not need distinguishing between each other, that many combinations
of pieces on the board are not even legal, and so on. But we are decidedly
uninterested in questions of real-life (computational) complexity, and for our
purposes any finite number is as good as another.

How can we model or formalize the game of chess? Obviously there are many
ways. The most natural one, perhaps, is to use algebraic chess notation. Each
game of chess can then be written down as a sequence of moves. Below is an
example of a short game of chess (scholar’s mate):

White: e4 Qh5 Bc4 Qxf7#
Black: e5 Nc6 Nf6

An alternative way would be to assign a natural number between 0 and 6433

to each unique position of the pieces on the board, and to write the positions,
rather than the moves, in a table analogous to the one above:

White: x0 x1 x2 x3
Black: y0 y1 y2 . . .

In either cases, we require that each step in the game corresponds to a legal
move according to the rules of chess, and when the game ends, there is a clear
algorithm for determining who the winner is. Using the first formalism, this
is incorporated into the notation (a “#” means “check-mate”), whereas in the
second one, certain numbers n correspond to a winning or losing position.

One could think of many other ways of encoding a game of chess. Regardless
which method we use, each completed game of chess is encoded as a finite
sequence of natural numbers of length at most 6433. In other words, each game
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is an elements of ωn for some n ≤ 6433. Let LEGAL be the set of those finite
sequences that correspond to a sequence of legal moves according to the rules
of chess (keeping in mind the particular encoding we have chosen). Now let
WIN ⊆ LEGAL be the subset of all such sequences which encode a winning game
for White. Clearly LEGAL − WIN is the set of legal games that correspond
to a win by Black. Thus, once the formalism of encoding moves of chess into
natural numbers has been agreed upon, the game called “chess” is completely
determined by the sets LEGAL and WIN.

1.3 General finite games

After an informal introduction to the mathematization of chess, we now give a
precise definition of finite games, as a natural abstraction from the particular
case, and at the same time paving the way to the introduction of infinite games
in the next chapter.

1.3.1 Definition. (Two-person, perfect-information finite game.) Let
N be a natural number (the length of the game), and A an arbitrary subset of
ω2N . The game GN (A) is played as follows:

• There are two players, Player I and Player II, which take turns in picking
one natural number at each step of the game.

• At each turn i, we denote Player I’s choice by xi and Player II’s choice by
yi.

• After N turns have been played the game looks as follows:

I: x0 x1 . . . xN−1
II: y0 y1 . . . yN−1

The sequence s := 〈x0, y0, x1, y1, . . . , xN−1, yN−1〉 is called a play of the
game GN (A).

• Player I wins the game GN (A) if s ∈ A, and Player II wins if s /∈ A. The
set A is called the pay-off set for Player I or the set of winning conditions
for Player I.

If we look at this definition we immediately notice two aspects in which
it differs from the informal discussion of chess in the last section. Firstly, we
are only considering sequences of length exactly 2N as valid plays, rather than
sequences of length less then or equal to 2N . Secondly, instead of restricting
the possible plays to some given set (like we defined LEGAL before) and only
considering those sequences, we allow any sequence of natural numbers of length
2N to be considered as a valid play.
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As it turns out, this change of formalism does not restrict the class of games
we can model. The first problem is easily fixed simply by assigning one particular
natural number (say 0) to represent the state in which “the game has been
completed”. For example, suppose a particular game of chess only took 20
moves, but our model requires the game to be N moves long (for N = 6433,
say). Then we simply fill in 0’s for all the moves after the 20-th until the N -th.
It is clear that this allows us to model the same class of games.

To fix the second problem, let us think about the following situation: suppose
in a game of chess, a player makes an illegal move, i.e., a move that is not allowed
by the rules of chess. One could then do one of two things: tell the player that
the move was illegal and should be re-played, or (in a stricter environment)
disqualify the player immediately, thus making him or her lose that game. In our
mathematical formalism, we chose the second option: so instead of stipulating
that only certain moves are allowed, we allow all possible moves to be played
but make sure that any player who makes an illegal move immediately loses the
game. That information can be encoded in the pay-off set A ⊆ ω2N .

The main reason we chose this formalism rather than the one involving
LEGAL is purely technical: it is much easier to work with one set A rather
than a combination of two sets. This will become especially clear after we have
extended finite games infinite games.

Note that we do not put any upper bound on the height of the individual
numbers xi and yi played by each player. Therefore, Definition 1.3.1 also allows
us to model games with an infinite number of possible moves (for example,
games on an infinite board), as long as there is a limit to the length of the
game.

1.4 Strategies

So far, we have only discussed a convenient mathematical abstraction of finite
games, but we have not seen anything of mathematical importance yet. The
main concept in the study of games (finite and infinite) is that of a strategy.
Informally, a strategy for a player is a method of determining the next move
based on the preceding sequence of moves. Formally, we introduce the following
definition:

1.4.1 Definition. Let GN (A) be a finite game of length N . A strategy for
Player I is a function

σ : {s ∈
⋃

n<2N

ωn : |s| is even } −→ ω

A strategy for Player II is a function

τ : {s ∈
⋃

n<2N

ωn : |s| is odd } −→ ω
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So a strategy for Player I is a function assigning a natural number to any
even sequence of natural numbers, i.e., assigning the next move to any sequence
of preceding moves, and the same holds for Player II. Note that it is Player I’s
turn to move if and only if the sequence of preceding moves is even, and Player
II’s turn if and only if it is odd.

Given a strategy σ for Player I, we can look at any sequence t = 〈y0, . . . , yN−1〉
of moves by Player II, and consider the play of a game GN (A) which arises as
a result of this strategy being applied against these moves. We denote this play
by σ ∗ t. By symmetry, if τ is a strategy for Player II and s = 〈x0, . . . , xN−1〉
the sequence of the opponents’ moves, we denote the result by s ∗ τ . Formally
we can give an inductive definition:

1.4.2 Definition.

1. Let σ be a strategy for player I in the game GN (A). For any t =
〈y0, . . . , yN−1〉 we define

σ ∗ t := 〈x0, y0, x1, y1, . . . , xN−1, yN−1〉

where the xi are given by the following inductive definition:

• x0 := σ(〈〉)
• xi+1 := σ(〈x0, y0, x1, y1, . . . , xi, yi〉)

2. Let τ be a strategy for player II in the game GN (A). For any s =
〈x0, . . . , xN−1〉 we define

s ∗ τ := 〈x0, y0, x1, y1, . . . , xN−1, yN−1〉

where the yi are given by the following inductive definition:

• y0 := σ(〈x0〉)
• yi+1 := σ(〈x0, y0, x1, y1, . . . , xi, yi, xi+1〉)

So a game where I uses strategy σ and II plays 〈y0, . . . , yN−1〉 would look
like this:

I: σ(〈〉) σ(〈σ(〈〉), y0〉) σ(〈σ(〈〉), y0, σ(〈σ(〈〉), y0〉), y1〉)
II: y0 y1 . . .

1.4.3 Definition. Let GN (A) be a game and σ a strategy for Player I. We
denote by

PlaysN (σ) := {σ ∗ t : t ∈ ωN}
the set of all possible plays in the game GN (A) in which I plays according to σ.
Similarly,

PlaysN (τ) := {s ∗ τ : s ∈ ωN}
denotes the set of all possible plays in which II plays according to τ .
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Now we introduce what may be called the most crucial concept of all game
theory:

1.4.4 Definition. Let GN (A) be a finite game.

1. A strategy σ is a winning strategy for Player I if for any t: σ ∗ t ∈ A.

2. A strategy τ is a winning strategy for Player II if for any s: s ∗ τ /∈ A.

1.4.5 Lemma. For any GN (A), Players I and II cannot both have winning
strategies.

Proof. Exercise 2.

1.5 Determinacy of finite games

Having introduced the concept of winning strategies it is natural to ask the
following question: is it always the case that either Player I or Player II has
a winning strategy in a given game? We refer to this is the determinacy of a
game.

1.5.1 Definition. A game GN (A) is called determined if either Player I or
Player II has a winning strategy.

1.5.2 Theorem. Every finite game GN (A) is determined.

Proof. Let us analyze the concept of a winning strategy once more. On close
inspection it becomes clear that Player I has a winning strategy in the game
GN (A) if and only if the following holds:

• ∃x0∀y0∃x1∀y1 . . . ∃xN−1∀yN−1 (〈x0, y0, x1, y1, . . . , xN−1, yN−1〉 ∈ A)

So suppose I does not have a winning strategy. Then

• ¬(∃x0∀y0∃x1∀y1 . . . ∃xN−1∀yN−1 (〈x0, y0, x1, y1, . . . , xN−1, yN−1〉 ∈ A))

By elementary duality of first order logic, this implies in sequence

• ∀x0¬(∀y0∃x1∀y1 . . . ∃xN−1∀yN−1 (〈x0, y0, x1, y1, . . . , xN−1, yN−1〉 ∈ A))

• ∀x0∃y0¬(∃x1∀y1 . . . ∃xN−1∀yN−1 (〈x0, y0, x1, y1, . . . , xN−1, yN−1〉 ∈ A))

• ∀x0∃y0∀x1¬(∀y1 . . . ∃xN−1∀yN−1 (〈x0, y0, x1, y1, . . . , xN−1, yN−1〉 ∈ A))

• ∀x0∃y0∀x1∃y1¬(. . . ∃xN−1∀yN−1 (〈x0, y0, x1, y1, . . . , xN−1, yN−1〉 ∈ A))

. . .

• ∀x0∃y0∀x1∃y1 . . . ∀xN−1∃yN−1 (〈x0, y0, x1, y1, . . . , xN−1, yN−1〉 /∈ A)

Now it is easy to see that the last statement holds if and only if Player II has a
winning strategy in GN (A).
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For those not so fond of first-order logic, alternative proofs can easily be
found: for example, using a backward induction argument on game-trees, or
using the notion of a defensive strategy which we will introduce in Section 3.1.

For the remainder of this chapter we briefly discuss the implications of the
above determinacy result for actual games. In our formalization of chess, it
follows that either White has a winning strategy or Black has a strategy to win
or draw. Of course, it now seems unsatisfactory to equate a draw to a win by
Black, so this is what we can do to avoid it: simply define two different games,
call them “white-chess” and “black-chess”, which are played exactly as chess
but in the first case, a draw is considered a win for white and in the second
case, a win for black. Both games are finite and determined, so there are four
possible combinations of assigning winning strategies to the two players. The
following table illustates this and sums up the conclusion for real chess in each
case (“w.s.” abbreviates winning strategy):

White-chess Black-chess Real chess

White has a w.s. White has a w.s. White has a strategy to win
Black has a w.s. White has a w.s. Impossible
White has a w.s. Black has a w.s. Both White and Black have

a strategy to draw
Black has a w.s. Black has a w.s. Black has a strategy to win

This leads to the following corollary of Theorem 1.5.2, typically credited to
Ernst Zermelo in the 1913 paper [Zermelo 1913]1

1.5.3 Corollary. In chess, either White has a winning strategy, or Black has
a winning strategy, or both have a drawing strategy.

Note that, of course, the above corollary only tells us a mathematical fact,
namely that there is such or such a strategy, and obviously does not tell us
which one it is! That would, in effect, amount to the game of chess having been
“solved” and having lost its character of being an actual game. To accomplish
this, one would need to parse through the tree of all possible games of chess, a
feat which would involve such enormously large numbers that it is practically
impossible (although there are easier games than chess that have been “solved”
in this sense). Moreover, such a tree-parsing method is only possible in games
with a finite number of possibile moves (such as chess) but Theorem 1.5.2 applies
equally well to finite games with an infinite possibility of moves.

1Although it is not entirely clear what Zermelo actually proved in this paper. See
[Schwalbe & Walker 2001] for a discussion.
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1.6 Exercises

1. Describe at least two ways of formalizing the game “tic-tac-toe” (noughts
and crosses). What is the length of the game? What kind of winning,
losing or drawing strategies do the players have?

2. Prove Lemma 1.4.5. (Hint: let σ ∗ τ be the result of playing σ against τ ,
and see what happens.)
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2 Infinite games

2.1 Basic definitions

We now extend our basic setting from finite to infinite games. This necessarily
involves slightly more advanced mathematics and set theory, since the study of
infinite objects is conceptually one level higher than that of finite objects. On
the other hand, the formalism we developed for finite games was intentionally
presented in such a way as to make the transition to infinite games smooth and
straightforward.

As we shall now deal with infinite sequences of natural numbers rather than
finite ones, our basic underlying object is the space of all functions from ω to
ω, denoted by ωω (see introduction for all the relevant notation). Games of
infinite length will produce infinite sequences, i.e., elements of ωω, and a pay-off
set will now be a subset of ωω rather than a subset of ω2N . For the rest, not
much changes.

2.1.1 Definition. (Two-person, perfect-information infinite game.) Let
A be an arbitrary subset of ωω. The game G(A) is played as follows:

• There are two players, Player I and Player II, which take turns in picking
one natural number at each step of the game.

• At each turn i, we denote Player I’s choice by xi and Player II’s choice by
yi.

• In the limit, an infinite game “has been played”, which looks as follows:

I: x0 x1 . . .
II: y0 y1 . . .

Now let z := 〈x0, y0, x1, y1, x2, y2, . . . 〉 be an infinite sequence, called a
play of the game G(A). Formally, we should define

z(i) :=

{
xi/2 if i is even

y(i−1)/2 if i is odd

• Player I wins the game G(A) if z ∈ A, and Player II wins if z /∈ A. The
set A is called the pay-off set for Player I or the set of winning conditions
for Player I.

Clearly, only the set A matters in the study of the game, and indeed the
study of infinite games is closely related to the study of various types of sets
A ⊆ ωω. This will become much more clear in Chapter 4 where we introduce a
topology on the space ωω which we closely related to the standard topology on
the real number continuum.
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2.1.2 Definition. Let G(A) be an infinite game. A strategy for Player I is a
function

σ : {s ∈ ω<ω : |s| is even } −→ ω

A strategy for Player II is a function

τ : {s ∈ ω<ω : |s| is odd } −→ ω

Given a strategy σ for Player I and an infinite sequence y = 〈y0, y1, y2 . . . 〉
of responses by Player II, we again use the notation σ ∗y to denote the resultant
play. Similarly, x ∗ τ stands for the play resulting from Player I playing x and
II playing according to strategy τ . Or, formally:

2.1.3 Definition.

1. Let σ be a strategy for player I. For any y = 〈y0, y1, . . . 〉 define

σ ∗ y := 〈x0, y0, x1, y1, . . . 〉

where the xi are given by the following inductive definition:

• x0 := σ(〈〉)
• xi+1 := σ(〈x0, y0, x1, y1, . . . , xi, yi〉)

2. Let τ be a strategy for player II. For any x = 〈x0, x1, . . . 〉 define

s ∗ τ := 〈x0, y0, x1, y1, . . . 〉

where the yi are given by the following inductive definition:

• y0 := σ(〈x0〉)
• yi+1 := σ(〈x0, y0, x1, y1, . . . , xi, yi, xi+1〉)

2.1.4 Definition. Let σ a strategy for Player I. We denote by

Plays(σ) := {σ ∗ x : x ∈ ωω}

the set of all possible infinite plays in which I plays according to σ. Similarly,

Plays(τ) := {y ∗ τ : y ∈ ωω}

is the set of all possible infinite plays in which II plays according to τ .

Just as in the finite case, we have the all-important concept of a winning
strategy:

2.1.5 Definition. Let A ⊆ ωω be a given pay-off set.
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1. A strategy σ is a winning strategy for Player I in G(A) if for any y ∈ ωω:
σ ∗ y ∈ A.

2. A strategy τ is a winning strategy for Player II in G(A) if for any x ∈ ωω:
x ∗ τ /∈ A.

2.1.6 Lemma. For any A ⊆ ωω, Players I and II cannot both have winning
strategies.

Proof. Exercise 1.

2.2 Some examples

Consider the following game: Players I and II pick natural numbers and the
first player to play a 5 loses. If no 5’s have been played at all, Player I wins.
How do we model this game? The only variable we have is the pay-off set A. In
this game, you can see that the set is

A := {z ∈ ωω : ∀n (z(n) 6= 5) ∨ ∃n (z(2n+ 1) = 5)}

Clearly Player I has an easy winning strategy in this game: don’t play any 5’s.
Another example: Players I and II pick numbers with the condition that

each number has to be higher than the previous one. The first player to break
that rule loses. If no-one has broken the rule, Player II wins. Here the pay-off
set A of winning conditions for Player I is given by

A := {z ∈ ωω : ∃n (z(2n+ 1) ≤ z(2n))}

Here II has a winning strategy: always play a number higher than the previous
one played.

Both games above are based on essentially finitary rules, but since we have
infinite games, we can easily introduce infinitary rules. Consider the following
game: I and II pick numbers, and Player I wins if and only if he plays infinitely
many 0’s. This is modeled by

A := {z ∈ ωω : ∀n∃m ≥ n (z(2m) = 0)}

Although the rule is infinitary in the sense that the players will only know who
won after infinitely many moves have been taken, it is nevertheless easy to see
that Player I has a winning strategy, for example: play a 0 every time.

13



2.3 Cardinality arguments

Before discussing the determinacy of infinite games, let us prove some easy
results about infinite games and strategies. As we mentioned before, the study
of infinite games G(A) is essentially related to the sets A themselves, and, in
particular, their cardinalities.

2.3.1 Theorem. Let A ⊆ ωω be a countable set. Then II has a winning strategy
in G(A).

Proof. Let A be enumerated by {a0, a1, a2, . . . }. We describe a winning strategy
τ for Player II. It is simply the following strategy: at your i-th move, play any
natural number different from ai(2i+ 1) (this is the (2i+ 1)-st digit of the i-th
element of A), regardless of the previous sequence of moves. Or, formally, define
for all i:

τ(〈x0, y0, . . . , xi〉) := ai(2i+ 1) + 1

Let z be the result of this strategy against anything played by Player I, i.e., let
z = x ∗ τ , for any x ∈ ωω. Write z := 〈x0, y0, x1, y1, . . . 〉. By construction, for
each natural i:

z(2i+ 1) = yi 6= ai(2i+ 1)

Hence, for each i:
z 6= ai

But then z /∈ A, proving that τ is indeed a winning strategy for Player II.

We continue with some more “cardinality arguments”. Recall that ωω has
the cardinality of the continuum, i.e., |ωω| = 2ℵ0 (this is the same as the cardi-
nality of the real numbers R, P(ω), 2ω := {f : ω → {0, 1}} and so on.)

2.3.2 Definition. For strategies σ and τ of Player I resp. II, let fσ and gτ be
functions from ωω to ωω defined by:

fσ(y) := σ ∗ y

gτ (x) := x ∗ τ

2.3.3 Lemma. Every function fσ is a bijection between ωω and Plays(σ). Every
function gτ is a bijection between ωω and Plays(τ).

Proof. Exercise 3.

2.3.4 Corollary. Let A be a set with |A| < 2ℵ0 . Then Player I cannot have a
winning strategy in G(A).2

2Note that if the Continuum Hypothesis is true, i.e., if 2ℵ0 is the smallest uncountable
cardinality, then by the previous Theorem 2.3.1 A must be countable so I must have a winning
strategy. So this Corollary has relevance only if the Continuum Hypothesis is false.

14



Proof. If σ were a winning strategy for Player I, then by definition we would
have Plays(σ) ⊆ A. By Lemma 2.3.3 there is an injection from ωω to Plays(σ),
namely fσ. But then the cardinality of A must be at least that of ωω, namely
2ℵ0 .

Obviously these two theorems also hold with the roles of I and II reversed,
i.e., if ωω −A is countable then I has a winning strategy, and if |ωω −A| < 2ℵ0

then II cannot have a winning strategy.

2.4 Determinacy of infinite games

If we extend the definition from section 1.5, we get the following:

2.4.1 Definition. A game G(A) is determined if either Player I or Player II
has a winning strategy.

Since the game G(A) depends only on the set A, we also say:

2.4.2 Definition. A set A ⊆ ωω is determined if the game G(A) is determined.

Is every game G(A) determined? Note that we can no longer apply the
“quantifier switch” of first-order logic as we did in the proof of Theorem 1.5.2,
since we would now have to write an infinite sequence of alternating quantifiers
∃x0∀y0∃x1∀y1 . . . which is not a valid logical formula. Indeed, we will now prove
that using the full power of mathematics, to be precise the Axiom of Choice
(which is one of the basic axioms of set theory, or foundations of mathematics),
we can show that there are non-determined games. The proof will by necessity
be more sophisticated then anything we have seen so far. In particular, it will
be non-constructive, i.e., we will not produce a concrete game G(A) and prove
that it is not determined, but only prove that a non-determined game must
exist.

The use of the Axiom of Choice is necessary here: one can show (using meta-
mathematical arguments) that without using it, it is impossible to prove this
result.

2.4.3 Theorem. There exists a non-determined set, i.e., a set A ⊆ ωω such
that G(A) is not determined.

The proof of this theorem uses transfinite induction on the ordinals α < 2ℵ0 .
However, since we do not assume familiarity with ordinals and cardinals in this
course, we will supply a blackbox result which encompasses exactly what we
need for the proof.

2.4.4 Definition. A well-ordered set is a set I with an order relation ≤ which
is

1. Reflexive: ∀α ∈ I (α ≤ α)
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2. Antisymmetric: ∀α, β ∈ I (α ≤ β ∧ β ≤ α→ α = β)

3. Transitive: ∀α, β, γ ∈ I (α ≤ β ∧ β ≤ γ → α ≤ γ)

4. Linear: ∀α, β ∈ I (α ≤ β ∨ β ≤ α)

5. Well-founded: every subset J ⊆ I contains an ≤-least element (i.e., an α
such that ∀β ∈ J (α ≤ β)). Equivalently, it means that there is no infinite
strictly descending sequence, i.e., no sequence {αi ∈ I : i ∈ ω} s.t.

α0 > α1 > α2 > . . .

If (I,≤) is a well-ordered set we can apply transfinite induction to that set.

2.4.5 Lemma. For every set X, there exists a well-ordered set (I,≤), which
we call the index set for X, such that

1. |I| = |X|, and

2. For every α ∈ I, the set {β ∈ I : β < α} has cardinality strictly less than
|I| = |X|.

Proof. (ordinal and cardinal theory) By the Axiom of Choice every set X can
be well-ordered, hence there is an ordinal α order-isomorphic to it. Let κ be
|α| = |X|, i.e., the least ordinal in bijection with α. Since κ is a cardinal, clearly
|κ| = κ = |α| = |X|, and for any γ < κ, the set {β < κ : β < γ} = β has
cardinality < κ. So (κ,∈) is the desired index set.

Those unfamiliar with ordinals can treat this lemma as a blackbox result
and ignore its proof. Intuitively, one can compare the situation with that of
a countable set X, in which case the index set is simply (ω,≤) (the standard
ordering of the natural numbers).

Proof of Theorem 2.4.3. We start by counting the possible number of strategies.
A strategy is a function from a subset of ω<ω to ω. But it is easy to see that
ω<ω is a countable set, and therefore can be identified with ω via some bijection.
Hence, each strategy can be identified with a function from ω to ω. Therefore,
there are exactly as many strategies as functions from ω to ω, namely 2ℵ0 .

Now let STRAT-I be the set of all possible strategies of Player I and apply
Lemma 2.4.5 to that set. The index set I has cardinality 2ℵ0 , and the bijection
between STRAT-I and I allows us to identify every strategy for Player I with
an index α ∈ I. Thus we can write

STRAT-I = {σα | α ∈ I}

We can do the same thing for the set STRAT-II of strategies of Player II, and
moreover we can use the same index set (since the cardinality is the same). So
we also have

STRAT-II = {τα | α ∈ I}
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Now we are going to produce two sets A,B ⊆ ωω by induction on (I,≤). We
are going to define

A := {aα : α ∈ I}

B := {bα : α ∈ I}

by the following simultaneous induction.

• Base case: Let 0 ∈ I stand for the ≤-least member of I. Arbitrarily
pick any a0 ∈ Plays(τ0). Now, Plays(σ0) clearly contains more than one
element, so we can pick b0 ∈ Plays(σ0) such that b0 6= a0.

• Induction step: Let α ∈ I and suppose that for all β < α, aβ and bβ
have already been chosen. We will chose aα and bα.

Note that since {bβ : β < α} is in bijection with {β ∈ I : β < α}, it
has cardinality strictly less than 2ℵ0 (by Lemma 2.4.5 (2)). On the other
hand, we already saw that Plays(τα) has cardinality 2ℵ0 . Therefore there
is at least one element in Plays(τα) but not in {bβ : β < α}. Pick any one
of these and call it aα.

Now do the same for the collection {aβ : β < α} ∪ {aα}. This still has
cardinality less than 2ℵ0 whereas Plays(σα) has cardinality 2ℵ0 , so we can
pick a bα in Plays(σα) which is not a member of {aβ : β < α} ∪ {aα}.

After having completed the inductive definition, we have defined our two
sets A and B.

Claim 1. A ∩B = ∅.

Proof of Claim 1. Take any a ∈ A. By construction, there is some α ∈ I such
that a = aα. Now, recall that at “stage α” of the inductive procedure, we made
sure that aα is not equal to bβ for any β < α. On the other hand, at each “stage
γ” for γ ≥ α, we made sure that bγ is not equal to aα. Hence aα is not equal
to any b ∈ B, proving the claim.

Claim 2. A is not determined.

Proof of Claim 2. First, assume that I has a winning strategy σ in G(A). Then
Plays(σ) ⊆ A. But there is an α ∈ I such that σ = σα. At “stage α” of the
inductive procedure we picked a bα ∈ Plays(σα). But by Claim 1, bα cannot be
in A—contradiction.

Now assume II has a winning strategy τ in G(A). Then Plays(τ)∩A = ∅. Again,
τ = τα for some α, but at “stage α” we picked aα ∈ Plays(τα)—contradiction.

This completes the proof of the theorem.

Although this is a delimitative result showing that we cannot hope to prove
that all games are determined, we will go on to show that this does not under-
mine the whole enterprise of infinite game theory. In fact, one may argue that
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for all sets A which are sufficiently interesting (i.e., not too non-constructive),
determinacy holds. The core of this idea lies in the Gale-Stewart Theorem which
we treat in the next chapter.

2.5 Exercises

1. Prove Lemma 2.1.6.

2. Let z := 〈z(0), z(1), z(2), . . . 〉 be an infinite sequence. Describe informally
the game G(A) where A = {z}. Who has a winning strategy in this game?
How many moves does that player need to make sure he or she has won
the game?

3. Prove Lemma 2.3.3.

4. For every set A ⊆ ωω and every n ∈ ω, define

〈n〉_A := {〈n〉_x : x /∈ A}

(a) Prove, or at least argue informally, that for every A ⊆ ωω, Player II
has a winning strategy in G(A) if and only if for every n, Player I
has a winning strategy in G(〈n〉_A).

(b) Similarly, prove that for every A ⊆ ωω, Player I has a winning strat-
egy in G(A) if and only if there is some n such that Player II has a
winning strategy in G(〈n〉_A).

5.∗ Adapt the proof of Theorem 2.4.3 to prove that the property of “being
determined” is not closed under complements, i.e., that there is a set A
such that G(A) is determined but G(ωω −A) is not determined.
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3 The Gale-Stewart Theorem

3.1 Defensive strategies

Imagine the following scenario: in a particular game (finite or infinite) Player
I does not have a winning strategy. Will that always remain the case at each
position of the game? In other words, after n moves have been played, will
it still be the case that Player I has no winning strategy in the game from
the n-th move onwards? Surely, this doesn’t seem right. After all, Player II
might make a mistake. She might play badly, meaning that even though I had
no winning strategy to begin with, he might acquire one following a mistake
made by Player II. Using the concept of a defensive strategy, we will now prove
that if the opponent plays “correctly”, such a situation will never happen. The
defensive strategy is essentially the strategy of “not making any mistakes”.

To formulate this precisely, we need to specify what we mean by a certain
position in a game.

3.1.1 Definition. Let G(A) be an infinite game. If s is a finite sequence of
even length, then G(A; s) denotes the game in which Player I starts by playing
x0, Player II continues with y0, etc., and Player I wins the game G(A; s) if and
only if s_ 〈x0, y0, x1, y1, . . . 〉 ∈ A.

So G(A; s) refers to the game G(A) but instead of starting at the initial
position, starting at position s, i.e., from the position in which the first moves
played are exactly s(0), s(1), . . . , s(n − 1) (where n = |s|). The reason we only
consider sequences of even length is because it corresponds to a certain number
of complete moves having been made (and it is again I’s turn to move).

3.1.2 Lemma. The game G(A; s) is exactly the same as the game G(A/s),
where A/s is the set defined by

A/s := {x ∈ ωω : s_x ∈ A}

Proof. Exercise 1.

Because of this Lemma, when talking about games at certain positions, we do
not really need to introduce new terminology but can simply refer to a different
game. Thus, I has a winning strategy in G(A; s) if and only if he has one in
G(A/s), and the same holds for Player II.

Concerning positions in a game, we also use the following notation: if t is a
finite sequence of length n and σ is a strategy for Player I, σ∗ t is the position in
the game which results when I plays according to σ and II plays the sequence t,
for the first n moves of the game. So σ∗t is a sequence of length 2n. Similarly, if
τ is a strategy for II and s a sequence of length n, we denote the result by s ∗ τ ,
which is also a sequence of length 2n. We will not give the formal definition
since this is a straightforward analogy to Definition 2.1.3

Now we can give the definition of defensive strategies.
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3.1.3 Definition. Fix a game G(A).

1. A strategy ∂I is defensive for Player I if for all t, Player II does not have
a winning strategy in G(A, ∂I ∗ t).

2. A strategy ∂II is defensive for Player II if for all s, Player I does not have
a winning strategy in G(A, s ∗ ∂II).

It is not clear that such defensive strategies even exist. Clearly, if one Player
has a winning strategy in G(A) then his or her opponent cannot have a defensive
strategy (an empty sequence 〈〉 would be a counterexample). However, we will
prove inductively that the converse is true.

3.1.4 Theorem. Let G(A) be an infinite game.

1. If Player II does not have a winning strategy, then Player I has a defensive
strategy.

2. If Player I does not have a winning strategy, then Player II has a defensive
strategy.

Proof. We construct defensive strategies inductively. The idea for both parts
is exactly the same, but we will give both proofs since the details are slightly
different.

1. The idea is to define ∂I such that for any t, Player II does not have a
winning strategy in G(A, ∂I ∗ t), by induction on the length of t. The base
case is t = 〈〉. In that case we don’t need to specify ∂I since in any case
∂I ∗ t is also the empty sequence, i.e., the initial position of the game, and
Player II does not have a winning strategy in G(A) by assumption.

Next, we assume that for all t of length n, Player II does not have a winning
strategy in G(A; ∂I ∗ t). Fix a t and for convenience set p := ∂I ∗ t.

Claim. There is an x0 such that for all y0, Player II still does not have
a winning strategy in G(A; p_ 〈x0, y0〉).

Proof. If not, then for each x0 there exists a corresponding y0 such that
Player II has a winning strategy, say τx0

, in the game G(A; p_ 〈x0, y0〉).
But then Player II already had a winning strategy in the game G(A; p),
namely the following one: if I plays x0, reply with y0 and then continue
following strategy τx0

. This contradicts our inductive hypothesis.

Now we extend ∂I and define ∂I(p) := x0, for that particular x0 as in
the Claim. No matter which y0 II plays in return, she will not gain a
winning strategy in the game G(A; p_ 〈∂I(p), y0〉). Since the proof works
for arbitrary p, we see that we have extended the induction hypothesis
with one more step, namely, for all t of length n + 1, II does not have a
winning strategy in G(A, ∂I ∗ t).
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2. Here we do the same with the roles of I and II reversed, i.e., we inductively
construct ∂II in such a way that for all s, Player I does not have a winning
strategy in G(A; s ∗ ∂II). If s = 〈〉 then again G(A; s ∗ ∂II) is just G(A)
and I has no winning strategy by assumption.

Now assume for all s of length n, Player I does not have a winning strategy
in G(A; s ∗ ∂II). Set p := s ∗ ∂II .

Claim. For all x0 there is a y0 such that Player I still does not have a
winning strategy in G(A; p_ 〈x0, y0〉).

Proof. If not, then there is an x0 such that for any y0, Player I has a win-
ning strategy σx0 in G(A; p_ 〈x0, y0〉). But then I already had a winning
strategy in G(A; p), namely the following one: play x0, and after any reply
y0 continue following σx0

. This contradicts our inductive hypothesis.

Now extend ∂II by stipulating that for any x0, ∂II(p
_ 〈x0〉) := y0, where

y0 depends on x0 as in the Claim. Since the proof worked for arbitrary
p, we have again extended the induction hypothesis with one more step,
namely, for all s of length n + 1, II does not have a winning strategy in
G(A, s ∗ ∂II).

Of course, following a defensive strategy does not guarantee a win. It might,
in theory, happen that even though Player I does not have a winning strategy at
any finite position of the game, he still wins the game (because of the complex
way the pay-off set is constructed). In the next section we show that this does
not happen at least for games with certain kinds of pay-off sets.

3.2 Finitely decidable sets

In section 2.2 we have seen some examples of finitary rules (intuitively, those
satisfied or broken at some finite stage of the game), and infinitary ones (those
requiring the entire infinite length of the game to verify). We make this precise
in the following definition regarding subsets of ωω. Recall that C denotes
initial segments.

3.2.1 Definition. A set A ⊆ ωω is finitely decidable if for all x ∈ ωω:

x ∈ A =⇒ ∃s C x ∀y (s C y → y ∈ A)

In words, this definition says that if x is in A then there is a finite initial segment
s of x such that any other infinite extension of s is in A as well.

You may also think about this as follows: suppose you are given an infinite
sequence x and you go along its values: x(0), x(1), x(2) etc. and constantly ask
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the question: is the infinite x going to be a member of A, or not? In general,
you may only know the answer to this question in infinitely many steps, i.e.,
after you have considered all the x(n)’s. However, if A is finitely decidable, then
this is not the case: at some finite stage, you will know whether x is in A or
not. The membership of x in A is decided at a finite stage—hence the name
“finitely decidable”.

The following theorem, one of the crucial early results of infinite game the-
ory, is known by the name “Gale-Stewart Theorem”, referring to the paper
[Gale & Stewart 1953].

3.2.2 Theorem. (Gale-Stewart, 1953) If A is finitely decidable then G(A) is
determined.

Proof. Suppose I does not have a winning strategy in the game G(A). Then
by Theorem 3.1.4 Player II has a defensive strategy ∂II . We claim that ∂II is
in fact a winning strategy for Player II. Take any x ∈ ωω. We must show that
x∗∂II /∈ A. Well, if x∗∂II ∈ A then by finite decidability there is an s C x∗∂II
such that all y with s C y are in A. But then Player I has a trivial winning
strategy in the game G(A; s)—play any number whatsoever. Since s is an initial
segment of x ∗ ∂II , it is a position in which II plays according to ∂II . But then
I having a winning strategy in G(A; s) contradicts the definition of a defensive
strategy! Hence we conclude that x ∗ ∂II /∈ A and this completes the proof.

An analogous proof, with the roles of Player I and II reversed, shows the
following:

3.2.3 Theorem. If ωω −A is finitely decidable then G(A) is determined.

Proof. Exercise 2.

3.3 Exercises

1. Prove Lemma 3.1.2.

2. Prove Theorem 3.2.3.

3. Let x ∈ ωω. Is {x} a finitely decidable set? Is G({x}) determined?

4. Let GN (A) be a finite game of length N . Reformulate this game as an
infinite game and prove that it is determined using the Gale-Stewart the-
orem.
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4 Topology on the Baire space

4.1 Basic concepts

In this chapter, we will delve much deeper into the underlying structure of the
set ωω of infinite sequences of natural numbers. By introducing a topology (and
metric) on ωω, we will be able to classify sets A ⊆ ωω better and the connection
with the Gale-Stewart theorem will become more apparent.

From now on, we will assume some knowledge of basic topology, although
we hope to present the theory in such a way that even readers not familiar with
general topology will be able to understand the specific case of the topology on
ωω.

4.1.1 Definition. Let s ∈ ω<ω be a finite sequence.

• We define
O(s) := {x ∈ ωω : s C x}

The sets O(s) are called basic open.

• A set A ⊆ ωω is called open if it is a union of basic open sets, i.e., if
A =

⋃
{O(s) : s ∈ J} for some subset J ⊆ ω<ω (note that the empty set

∅ is open since it is a vacuous union of basic open sets).

• A set A ⊆ ωω is called closed if its complement ωω −A is open.

Recall that a space together with a collection of “open” subsets forms a
topological space if the following conditions are satisfied:

1. ∅ and the entire space are open,

2. an arbitrary union of open sets is open, and

3. a finite intersection of open sets if open.

We will now verify that ωω with the collection of open sets as defined above
forms a topological space.

4.1.2 Definition. Let s, t ∈ ω<ω. We say that s and t are compatible, notation
s||t, if either s C t or t C s (or s = t). Otherwise s and t are called incompatible,
denoted by s⊥t.

4.1.3 Lemma. Let s, t ∈ ω<ω. The following holds:

1. s C t if and only if O(t) ⊆ O(s),

2. s||t if and only if O(s) ⊆ O(t) or O(t) ⊆ O(s),

3. s⊥t if and only if O(s) ∩O(t) = ∅,

4. O(s) ∩O(t) is either ∅ or basic open.
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Proof.

1. Suppose s C t. Then x ∈ O(t)→ t C x→ s C x→ x ∈ O(s). Conversely,
suppose s 6C t. Then either |t| < |s| or there exists an i such that s(i) 6=
t(i). In either case, we can define an extension x of t such that for some
i, x(i) 6= s(i) which shows that x ∈ O(t) but x /∈ O(s).

2. This follows directly from point 1.

3. If s⊥t then there is an i such that s(i) 6= t(i). Then any extension of x is
not an extension of t, hence O(s) ∩O(t) = ∅.

4. Either s||t or s⊥t. Hence O(s) ∩O(t) is either O(s), or O(t), or ∅.

4.1.4 Corollary. The space ωω with the collection of open sets is a topological
space.

Proof. We verify the three required conditions:

1. ∅ is clearly open, and ωω is open because it is equal to O(〈〉).

2. A union of open sets is open since a union of unions of basic open sets is
itself a union of basic open sets.

3. Let A,B be open, and we must verify that A ∩ B is open. But if A =⋃
{O(s) : s ∈ J1} and B =

⋃
{O(t) : t ∈ J2} then A∩B =

⋃
{O(s)∩O(t) :

s ∈ J1, t ∈ J2} and each O(s) ∩O(t) is either basic open or ∅ by Lemma
4.1.3 (4), hence A ∩B is open.

This topological space is called Baire space. It has many similarities with
the real line R, in fact so many that pure set theorists prefer to study the Baire
space instead of R, and call elements x ∈ ωω real numbers. The Baire space
is homeomorphic to the space of irrational numbers R − Q with the standard
topology. But there is also an important difference: the Baire space is totally
disconnected, which follows from the following Lemma.

4.1.5 Lemma. For every s, O(s) is clopen (closed and open).

Proof. Let n = |s| and we claim that ωω −O(s) =
⋃
{O(t) : |t| = n and t 6= s}.

If x /∈ O(s) then s 6C x, so let t := x � n. Clearly |t| = n, t 6= s and t C x, so
x ∈ O(t). Conversely, if x ∈ O(s) then s C x so for any t of length n and t 6= s,
clearly t 6C x. Hence x /∈ O(t) for any such t.

We can also consider ωω as a metric space and define the following metric d
to measure distance between two points x and y.
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4.1.6 Definition. The metric on Baire space is the function d : ωω×ωω −→ R
given by

d(x, y) :=

{
0 if x = y
1/2n where n is least s.t. x(n) 6= y(n)

It is not hard to verify that the standard axioms of a metric space apply.
Moreover, the topology induced by this metric is the same as the topology
described above, as follow from the following Lemma.

4.1.7 Lemma. For any x and n, O(x � n) is the open ball around x with radius
ε = 1/2n.

Proof. Exercise 4.

4.2 Convergence and continuity

4.2.1 Definition. An infinite sequence {xn}n∈ω is said to converge to x, nota-
tion “xn → x”, if the following condition holds:

∀s C x ∃N ∀n ≥ N (s C xn)

Such an x is called the limit of {xn}n∈ω and denoted by

x = lim
n→∞

xn

If such x does not exist, we call the sequence divergent.

We can give two equivalent definitions of convergence:

1. xn → x if and only if for all basic open neighbourhoods O(s) of x, ∃N ∀n ≥
n (xn ∈ O(s)), and

2. xn → x if and only if ∀i ∃N ∀n ≥ N xn(i) is constant.

The first point shows that convergence in the sense of Definition 4.2.1 coincides
with the normal definition of convergence in a topological space, whereas the
second point shows that convergence of infinite functions is pointwise conver-
gence.

Now let’s turn to continuous functions from ωω to ωω. The standard def-
inition is that a function from a topological space to another is continuous if
the pre-image of open sets is open, i.e., if O is open then f−1[O] is open. In
the Baire space, this is equivalent to saying that f preserves limits, i.e., if the
sequence {xn}n∈ω converges to x then {f(xn)}n∈ω converges to f(x). In other
words

lim
n→∞

f(xn) = f
(

lim
n→∞

xn

)
Using this we can define continuity of functions from ωω to ωω using the follow-
ing direct clause:
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4.2.2 Definition. A function f : ωω −→ ωω is continuous if for each x ∈ ωω
we have

∀s C f(x) ∃t C x ∀y (t C y → s C f(y))

4.3 Trees

Now we introduce the notion of a tree. This section will be slightly more techni-
cal then the rest and, in principle, can be omitted without continuity, although
we will return to trees in Chapter 5. The term “tree” has various meanings in
mathematics, and we stress that here we only present the notion relevant to the
topology on Baire space.

The idea is that since infinite sequences, or real numbers, x ∈ ωω can be
finitely approximated by its initial segments s C x, a whole set A ⊆ ωω can be
approximated by the set of all initial segments of all its members. Although a
real x is completely determined by the set of all its initial segments {s ∈ ω<ω :
s C x}, this does not apply to sets of real numbers. One simple reason is that

there are 2(2
ℵ0 ) possible subsets of ωω whereas there are only 2ℵ0 possible sets of

finite sequences (because ω<ω is countable). Hence, the transition from A ⊆ ωω
to the set of finite approximations of all its members can, in general, involve
loss of information. But we will see that this is not the case for closed A, and
that in fact there is a one-to-one correspondence between trees and closed sets.

4.3.1 Definition. A tree T is any collection of finite sequences T ⊆ ω<ω closed
under initial segments:

s ∈ T ∧ t C s → t ∈ T

It is easy to see why such objects are called “trees”: the finite sequences are
like nodes that can branch off in different directions. Because of this we use
standard terminology for our trees:

4.3.2 Definition. Let T be a tree.

1. A t ∈ T is called a node of T . The successors of t are all nodes s ∈ T
such that t C s and |s| = |t|+ 1.

2. A t ∈ T is called terminal if it has no successors.

3. A t ∈ T is called non-splitting if it has only one successor.

4. A t ∈ T is called finitely splitting if it has only finitely many successors,
and infinitely splitting otherwise.

4.3.3 Definition. For a tree T , a branch through T is any x ∈ ωω such that
∀s C x : s ∈ T . The set of branches through T is denoted by [T ].
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4.3.4 Definition. Let A ⊆ ωω be a set of real numbers. The tree of A, denoted
by T (A), is the tree of all initial segments of all members of A, i.e.,

T (A) := {s ∈ ω<ω : s C x for some x ∈ A}

If x ∈ A then any s C x is in T (A), and hence x is a branch through T (A),
i.e., A ⊆ [T (A)] holds. Does the reverse inclusion hold? As we already men-
tioned above, this cannot be the case in general, because there are more subsets
of ωω than there are trees (i.e., the mapping A 7→ [T (A)] cannot be injective.)
But it is much more instructive to see an explicit example of a set A which is
not equal to [T (A)].

Example. Let A = {xn : n ∈ ω} where

xn(i) :=

{
1 if i < n
0 otherwise

So
x0 = 〈0, 0, 0, . . . 〉
x1 = 〈1, 0, 0, 0, . . . 〉
x2 = 〈1, 1, 0, 0, 0, . . . 〉
x3 = 〈1, 1, 1, 0, 0, 0, . . . 〉

etc . . .

Consider the real x = 〈1, 1, 1, 1, . . . 〉. If s is any initial segment of x of length
n, then clearly s C xn, hence s ∈ T (A). Therefore x ∈ [T (A)]. However, x was
not on our list of xn’s, so x /∈ A.

The reason this happens is because the set A is not topologically closed. But
for closed A, there is a neat correspondence as the following Theorem shows.

4.3.5 Theorem.

1. For any tree T , [T ] is a closed set.

2. For any closed set C, [T (C)] = C.

Proof.

1. We will show that ωω − [T ] =
⋃
{O(t) : t /∈ T}. First let x /∈ [T ]. By

definition, there is t C x such that t /∈ T . But then x ∈ O(t). Conversely,
suppose x ∈ O(t) for some t /∈ T . Then t C x. Again, by definition,
x /∈ [T ].

2. We already saw that C ⊆ [T (C)] always holds, so it remains to prove
the reverse inclusion. So suppose x ∈ [T (C)], and towards contradiction
assume x /∈ C. Since the complement of C is open, x is contained in some
O(t) such that O(t) ∩ C = ∅. But x ∈ [T (C)] and t C x, so it must be
the case that t ∈ T (C). But by definition this means that t is the initial
segment of some real in C, i.e., there should be at least one y ∈ C such
that t C y. But then y ∈ O(t) and thus O(t) ∩ C 6= ∅ which contradicts
what we showed earlier.
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So there is a one-one correspondence between closed sets and trees, given by
C 7→ T (C) one way and T 7→ [T ] in the other. Moreover, for any set A, [T (A)]
is the smallest closed set containing A as a subset, since if C were any other
closed set with A ⊆ C we would have [T (A)] ⊆ [T (C)] = C. Therefore, the
operation A 7→ [T (A)] is the topological closure of the set A.

Another way of thinking about this is the following: recall that in any metric
space, a set C is closed if and only if for any sequence {xn}n∈ω which converges
to x, if every xn ∈ C then x ∈ C—we say that C is closed under limit points.
Using Definition 4.2.1 it is easy to see that [T ] is closed under limit points and
that the operation A 7→ [T (A)] is exactly the closure under such limit points—
any x which is a limit of a sequence {xn}n∈ω in A will be adjoined to the set
by the transition from A to [T (A)].

4.4 Topology and determinacy

One connection between topology and determinacy was already implicitly es-
tablished in section 3.2, even though we had not mentioned closed or open sets
back then. If you have not already guessed, the connection is quite trivial:

4.4.1 Lemma. A set A ⊆ ωω is open if and only if it is finitely decidable

Proof. Let A be open and x ∈ A. By definition there must be a basic open
O(t) ⊆ A such that x ∈ O(t). But then t C x and every y with t C y is in O(t)
and hence in A. Therefore A is finitely decidable.

Conversely, if A is finitely decidable then for every x ∈ A there is a t C x such
that any y with t C y is in A. This is the same as saying that for every x there
exists a basic open neighbourhood O(t) of x such that O(t) ⊆ A. But then A is
open, since it is the union of all these basic open sets.

4.4.2 Corollary. If A is open or closed then G(A) is determined.

Proof. This follows directly from the above Lemma and Theorems 3.2.2 and
3.2.3.

A natural next question is: what about the determinacy of games with more
complex pay-off sets? If we allow countable unions of closed set, we get the
so-called Fσ sets. Similarly, countable intersections of open sets are called Gδ
sets. These are really more complex then open or closed, but still fairly simple.
It is possible (and not so hard) to prove that these are also determined. But
we will not bother with that because there exists a far stronger result which
subsumes these cases.

4.4.3 Definition. A σ-algebra of subsets of ωω is a collection A ⊆ P(ωω)
closed under countable unions and complements, i.e.,

1. If An ∈ A for n ∈ ω then
⋃
nAn ∈ A, and
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2. If A ∈ A then ωω −A ∈ A.

4.4.4 Definition. The Borel σ-algebra B is the smallest σ-algebra containing
all open sets. Members of B are called Borel sets.

4.4.5 Theorem. (Martin, 1975) For every Borel set B, G(B) is determined.

Unfortunately, it is beyond the scope of this course to prove this theorem,
which requires the use of more complex kinds of infinite games than we have
studied so far. But the consequences of this theorem are quite broad and we
shall see some applications in the next section.

The Borel sets form a large group of subsets of ωω, and for many applications
in topology and analysis, they are all one cares about. Nevertheless, there are
many non-Borel sets and we would also like to go beyond and look at classes
extending the Borel σ-algebra. There are many such classes studied in topology
and set theory, most notably the projective pointclasses, but also others. We
make a general definition:

4.4.6 Definition. Let Γ ⊆P(ωω) be a collection of subsets of ωω. We call Γ a
boldface pointclass3 if it is closed under continuous pre-images and intersections
with closed sets, i.e.,

1. For all A, if A ∈ Γ then f−1[A] ∈ Γ, and

2. For all closed sets C, if A ∈ Γ then A ∩ C ∈ Γ.

The closed, Fσ, Gδ sets, as well as the Borel sets B, are examples of boldface
pointclasses. P(ωω) is also a trivial boldface pointclass.

4.4.7 Definition. For a boldface pointclass Γ, “Det(Γ)” abbreviates the state-
ment: “for every A ∈ Γ, G(A) is determined.”

So the Gale-Stewart theorem says Det(open) and Det(closed), and Mar-
tin’s Theorem 4.4.5 says Det(B). On the other hand, Theorem 2.4.3 says
¬Det(P(ωω)).

It turns out that if we focus on pointclasses Γ that extend the Borel sets, but
are still far below P(ωω), then typically the statement Det(Γ) is independent
of the basic axioms of set theory, i.e., it is not possible to prove or refute the
statement based on the axioms alone. Nevertheless, as long as Det(Γ) is not
outright contradictory, we can take it as an axiom and develop its consequences.
The most typical instances is when Γ refers to classes in the projective hierarchy
(the Σ1

n and ∆1
n sets) or the class of all projective sets (

⋃
n Σ1

n). For the
latter case, the axiom is frequently referred to as PD (the axiom of Projective
Determinacy) in the literature and is an axiom often considered in the context
of large cardinals.

3The name comes from the fact that such classes were traditionally denoted by boldface
letters. Although it is a funny blend of syntax and semantics which, formally speaking, is
wrong and might lead to problems, in practice this does not occur because usually people
have explicitly defined Γ in mind.
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All of this lies far beyond the scope of our course. In the next section, we
will look at arbitrary pointclasses Γ, and see what happens if we assume Det(Γ)
as an axiom.

4.5 Exercises

1. Prove that the metric d defined in Definition 4.1.6 satisfies the triangle
inequality (one of the four metric-axioms):

d(x, z) ≤ d(x, y) + d(y, z)

2. Prove that the Baire space is a Hausdorff space, i.e., that for any two
x 6= y there are two disjoint open neighbourhoods of x and y.

3. A topological space is called totally separated if for every two x 6= y there
are open sets U and V such that x ∈ U , y ∈ V and U ∪V equals the whole
space. Prove that the Baire space is totally separated.

4. Prove Lemma 4.1.7

5. Prove that for any x, the set T=x := {s ∈ ω<ω : s C x} is a tree, that
[T=x] = {x} and conclude that singletons are closed.

6. For x ∈ ωω let A≤x := {y ∈ ωω : ∀n (y(n) ≤ x(n))} and T≤x := {s ∈
ω<ω : ∀n (s(n) ≤ x(n)}. Show that T≤x is a tree, that [T≤x] = A, and
conclude that A≤x is closed.

7. Repeat the previous exercise for the sets A≥x and T≥x defined analogously
but with “≤” replaced by “≥”.

8. Prove that for any n,m ∈ ω, the set An7→m := {x ∈ ωω | x(n) = m} is
closed.

9. Let Cn be a closed set for every n. Show that the set C := {x ∈ ωω |
∀n (x ∈ Cn)} is closed. Come up with an example showing that this does
not hold for the set A := {x ∈ ωω | ∃n (x ∈ Cn)}.

10. Conclude from Exercises 8 and 9 (or prove directly) that for infinite
sequences 〈n0, n1, . . . 〉 and 〈m0,m1, . . . 〉 the set A~n 7→~m := {x ∈ ωω :
∀i (x(ni) = mi)} is closed.

11. A tree is called pruned if every node has a successor, i.e., ∀s ∈ T ∃t ∈ T
such that s C t. Show that every tree T can be turned into a pruned tree
pr(T ) in such a way that [pr(T )] = [T ].

12. ∗ A set K in a topological space is called compact if every infinite cover of
K by open sets has a finite subcover, i.e., if for every J and K ⊆

⋃
{Oj :

j ∈ J} with each Oj open, there exists a finite subset I ⊆ J such that
K ⊆

⋃
{Oj : j ∈ I}. Show that in the Baire space, a closed set K is

compact if and only if in the tree T (K), every node is finitely splitting.
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5 Applications of infinite games

5.1 Continuous coding

We have now arrived at the stage promised in the introduction, namely where
we can construct and use infinite games as tools in the study of various mathe-
matical objects. In the sections following this one, we will present four different
mathematical topics related to the continuum (Baire space and/or real num-
bers), and in each case show how infinite games help us to understand these
topics better. The general structure of all our theorems will be as follows: sup-
pose Γ is a boldface pointclass, and Φ is some mathematical property of subsets
of ωω or some other topological space representing the “continuum” that we are
interested in for whatever reason. We will prove that if we assume Det(Γ), i.e.,
if all sets in Γ are determined, then we can conclude that all sets in Γ satisfy
this property Φ. If such a result can be proved for all boldface pointclasses, it
implies, in particular, that Borel sets satisfy property Φ.

The problem with this approach is that the games we need are not exactly
the infinite games that fall under Definition 2.1.1. For example, the games
may require the players to play other mathematical objects instead of natural
numbers, and the winning condition may be rather complicated. To deal with
this problem we must introduce the technique of continuous coding which allows
us to treat complex rules as standard games falling under Definition 2.1.1. As
motivation let us consider the following example (to which we will return in
section 5.2. in more detail):

5.1.1 Definition. Let A ⊆ ωω be a set, and consider the following game, called
the Banach-Mazur game and denoted by G∗∗(A): Players I and II alternate in
taking turns, but instead of natural numbers, they play non-empty sequences of
natural numbers si, ti ∈ ω<ω:

I: s0 s1 . . .
II: t0 t1 . . .

Then let z := s0
_t0

_s1
_t1

_ . . . and say that Player I wins if and only if z ∈ A.

This game, at least on first sight, does not appear to be an infinite game
according to our definition. However, as you may recall from our treatment of
chess in the first chapter, the same was true there as well. What we did in
order to formalize various games in a uniform way was to code the positions,
moves etc. of the game as natural numbers. Clearly the same can be done
here, too: since ω<ω is countable, we can fix a bijection ϕ : ω −→ ω<ω − {〈〉}
and formulate the Banach-Mazur game as a game with natural numbers. But
then, we must change the pay-off set accordingly: if A was the pay-off set of the
Banach-Mazur game, let

A∗∗ := {z ∈ ωω : ϕ(z(0))_ϕ(z(1))_ϕ(z(2))_ · · · ∈ A}
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It is easy to see that Player I wins G∗∗(A) if and only if he wins G(A∗∗), and
the same holds for Player II. Hence the two games are equivalent, and we have
succeeded in formalizing the Banach-Mazur game a game on natural numbers
as in Definition 2.1.1.

However, one problem still remains. In applications, it is the Banach-Mazur
game G∗∗(A) we are interested in, not the encoded game G(A∗∗). Suppose we
have a theorem proving that if G∗∗(A) is determined, then A has some property
Φ we are interested in. From that we wish to conclude that Det(Γ) implies that
all sets in Γ satisfy property Φ. In other words, we would like to fix A ∈ Γ and
conclude that G∗∗(A) is determined. But we cannot! The only thing we can
conclude is that G(A) is determined, and that is not enough.

But we saw that G∗∗(A) is equivalent to G(A∗∗), so if we knew that the
set A∗∗ is in Γ, then we could conclude that G(A∗∗) is determined, hence that
G∗∗(A) is determined, and hence that A satisfies property Φ. But now, recall
that our pointclass Γ was not just any collection of sets, but one satisfying two
closure properties. If we could somehow use these closure properties to show
that whenever A ∈ Γ then also A∗∗ ∈ Γ, we would be done. For example, if
there is a closed set C and a continuous function f such that A∗∗ = f−1[A]∩C
then it is clearly enough.

In general, we will usually have a situation similar to the one above, and
we will need a combination of continuous functions and closed sets in order
to reduce a complex game to a standard game. In a few cases we may need
additional closure assumptions on the pointclass Γ but we will always make this
explicit.

In each of the particular sections we will define special games, and verify
that a sufficient coding indeed exists prior to using the game as a tool to prove
some results.

5.2 The perfect set property

The questions in this section are motivated by an early attempt of Georg Cantor
to solve the Continuum Hypothesis. We start with an important definition:

5.2.1 Definition. A tree T is called a perfect tree if every node t ∈ T has at
least two incompatible extensions in T , i.e., ∃s1, s2 ∈ T such that t C s1 and
t C s2 and s1⊥s2.

Perfect trees also have an equivalent topological characterization: see Exer-
cise 1.

5.2.2 Lemma. If T is a perfect tree then [T ] has the cardinality of the contin-
uum 2ℵ0 .

Proof. We know that the set 2ω of all infinite sequences of 0’s and 1’s has
cardinality 2ℵ0 . Let 2<ω denote the collection of all finite sequences of 0’s and
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1’s. Recall that a node t ∈ T is called splitting if it has at least two successors
t_ 〈n〉 and t_ 〈m〉 in T . By induction we define a function ϕ from 2<ω to the
splitting nodes of T :

• ϕ(〈〉) := least splitting node of T ,

• If ϕ(s) has been defined for s ∈ 2<ω, then ϕ(s) is a splitting node of T ,
hence there are different n and m such that ϕ(s)_ 〈n〉 and ϕ(s)_ 〈m〉 are
both in T . Now let ϕ(s_ 〈0〉) be the least splitting node of T extend-
ing ϕ(s)_ 〈n〉 and ϕ(s_ 〈1〉) be the least splitting node of T extending
ϕ(s)_ 〈m〉.

We can now lift the function ϕ to ϕ̂ : 2ω −→ [T ] by setting

ϕ̂(x) := the unique z ∈ [T ] such that ∀s C x (ϕ(s) C z)

It only remains to verify that ϕ̂ is injective. But if x, y ∈ 2ω and x 6= y then
there is a least n such that x � n 6= y � n. But ϕ was inductively defined in such
a way that ϕ(x � n) 6= ϕ(y � n). Since ϕ(x � n) C ϕ̂(x) and ϕ(t � n) C ϕ̂(y), it
follows that ϕ̂(x) 6= ϕ̂(y).

Therefore there is an injection from 2ω to [T ] and hence [T ] has cardinality
2ℵ0 .

This theorem is much more intuitive then may seem at first sight. It simply
says that if a set contains a “copy” of the full binary tree, then it must have the
cardinality of the full binary tree, which is 2ℵ0 .

Now recall that the Continuum Hypothesis is the statement that every un-
countable set has cardinality 2ℵ0 . Cantor intuitively wanted to prove this hy-
pothesis along the following lines of reasoning: if a subset of the reals (or Baire
space), is uncountable, then there must be an explicit reason for it to be so. The
only explicit reason he could think of is that the set would contain a perfect tree.
Hence, he defined the following dichotomy property for subsets of R (which we
will present in the setting of ωω):

5.2.3 Definition. A set A ⊆ ωω has the perfect set property, abbreviated by
PSP, if it is either countable or there is a perfect tree T such that [T ] ⊆ A.

Towards proving the Continuum Hypothesis, Cantor hoped to prove that
every set satisfies the perfect set property. In fact, using the Axiom of Choice
we can easily show that that assertion is false: the proof is analogous to the
proof that there is a non-determined game, our Theorem 2.4.3. See Exercise 2.
However, in this section we will show that it is reasonable for PSP to hold for
sets in some limited pointclass, and the way we do that is by showing that PSP
follows from determinacy. For that we will need to define the ∗-game, due to
Morton Davis [Davis 1964].

5.2.4 Definition. Let A ⊆ ωω be a set. The game G∗(A) is played as follows:
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• Player I plays non-empty sequences of natural numbers, and Player II
plays natural numbers.

I : s0 s1 s2 . . .
II : n1 n2 . . .

• Player I wins G∗(A) if and only if

1. ∀i ≥ 1: si(0) 6= ni, and

2. x := s0
_s1

_s2
_ · · · ∈ A.

In this game, the roles of I and II are not symmetrical. The intuition is
that Player I plays finite sequences, attempting, in the limit, to form an infinite
sequence in A. The outcome of the game depends only on the moves of Player I.
The role of Player II is entirely different: the only influence she has on the game
is that at each step she may choose a natural number ni, and in the next move,
Player I may play any sequence si whose first digit is not equal to ni. Therefore
I wins the game if he can overcome the challenges set by II and produce an
infinite sequence in A. II wins if she can choose numbers in such a way as to
prevent I from reaching his objective.

Before studying the consequences of the determinacy of G∗(A), we must
show that this game can be coded into a standard game, with moves in ω. Fix
a bijection ϕ : ω −→ (ω<ω − 〈〉). Then the ∗-game can be reformulated as a
standard game with the pay-off set given by

A∗ = {z ∈ ωω : ∀n ≥ 1 (ϕ(z(2n))(0) 6= z(2n− 1))

∧ ϕ(z(0))_ϕ(z(2))_ϕ(z(4))_ · · · ∈ A}

It remains to show that for boldface pointclasses Γ, A ∈ Γ⇒ A∗ ∈ Γ. For this
we need two steps:

5.2.5 Lemma. The function f : ωω −→ ωω given by

f(z) := ϕ(z(0))_ϕ(z(2))_ϕ(z(4))_ . . .

is continuous.

Proof. We must check that f satisfies the definition of continuity given in Defini-
tion 4.2.2. Fix z and let s C f(z). Let n be least such that s C ϕ(z(0))_ . . ._ϕ(z(2n)).
Let t := 〈z(0), z(1), . . . , z(2n)〉 C z. Now, for any other y with t C y we have

f(y) = ϕ(z(0))_ . . ._ϕ(z(2n))_ϕ(y(2(n+ 1)))_ . . .

Therefore in any case s C f(y) holds, which completes the proof.

5.2.6 Lemma. The set C := {z ∈ ωω : ∀n ≥ 1 (ϕ(z(2n))(0) 6= z(2n − 1))} is
closed.
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Proof. This is very similar to Exercise 4.10. Note that C =
⋂
n≥1 Cn where

Cn := {z : ϕ(z(2n))(0) 6= z(2n− 1)}

so it remains to show that each Cn is closed. But it is not hard to see that
Cn = [Tn] where Tn := {t ∈ ω<ω : if |t| > 2n then ϕ(t(2n))(0) 6= t(2n− 1)}. We
leave the details to the reader.

Now it is clear that A∗ = C∩f−1[A], and since Γ is closed under continuous
preimages and intersections with closed sets, we indeed see that A ∈ Γ⇒ A∗ ∈
Γ.

5.2.7 Theorem. (Davis, 1964) Let A ⊆ ωω be a set.

1. If Player I has a winning strategy in G∗(A) then A contains a perfect tree.

2. If Player II has a winning strategy in G∗(A) then A is countable.

Proof.

1. Let σ be a winning strategy for Player I in the game G∗(A). Although
we are not talking about standard games, we can still use the notation
σ ∗ y for an infinite run of the game in which II plays y and I according
to σ, and similarly σ ∗ t for a finite position of the game. Let Plays∗(σ) :=
{σ ∗ y : y ∈ ωω} as before and additionally let

Tσ := {s ∈ ω<ω : s C (σ ∗ t) for some t}

It is easy to verify that Tσ is a tree and that [Tσ] = Plays∗(σ) ⊆ A. So it
remains to show that Tσ is a perfect tree.

Pick any t ∈ Tσ and consider the least move i such that t C s0_ . . ._si.
Now II can play ni+1 in her next move, after which I, assuming he follows
σ, must play an si+1 such that si+1(0) 6= ni+1. Let mi+1 := si+1(0).
Instead of playing ni+1, Player II could also have played mi+1 in which
case I would have been forced to play a ti+1 such that ti+1(0) 6= mi+1.
But then ti+1 6= si+1, and both the sequence s0

_ . . ._si
_ti+1 and the

sequence s0
_ . . ._si

_si+1 are incompatible extensions of t according to
σ, and hence are members of Tσ. This completes the proof that Tσ is
perfect.

2. Now fix a winning strategy τ for II. Suppose p is a partial play according to
τ , and such that it is Player I’s turn to move, i.e., p = 〈s0, n1, s1, . . . , si−1, ni〉.
Then we write p∗ := s0

_ . . ._si−1. For such p and x ∈ ωω we say:

• p is compatible with x if there exists an si such that si(0) 6= ni and
p∗_si C x. Note that this holds if and only if p∗ C x and ni (II’s
last move) doesn’t “lie on x”. Intuitively, this simply says that at
position p, Player I still has a chance to produce x as the infinite
play.
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• p rejects x if it is compatible with x and maximally so, i.e., if for all
si with si(0) 6= ni, we have p_ 〈si, τ(p_ 〈si〉)〉 is not compatible with
x any longer. In other words, at position p Player I still has a chance
to extend the game in the direction of x, but for just one more move,
because, no matter which si he plays, Player II will reply with ni+1

according to her strategy τ , after which I will not have a chance to
produce x any more.

Claim 1. For every x ∈ A, there is a p which rejects it.

Proof. Fix an x ∈ A and towards contradiction, suppose there is no p
which rejects it. Then at every stage of the game, Player I can play an
si such that s0

_ . . ._si C x and such that Player II’s strategy τ can do
nothing to stop him. That means there is a sequence y played by I such
that y ∗ τ = x ∈ A, contradicting the fact that τ is a winning strategy for
II.

Claim 2. Every p rejects at most one x.

Proof. Suppose p rejects x and y and x 6= y. By definition, p is compatible
with both x and y, so Player I can play some si with si(0) 6= ni and
p∗_si C x and p∗_si C y. But then, he can also play si to be maximal
in this sense, i.e., such that any further extension p∗_si

_ 〈n〉 cannot be
an initial segment of both x and y (this is always possible since there is
an n such that x(n) 6= y(n)).

Then consider ni+1 := τ(p_ 〈si〉). Clearly ni+1 cannot lie on both x and
y, so p_ 〈si, ni+1〉 can still be extended by Player I to be compatible with
either x or y. Therefore, p does not reject both x and y

If we now define Kp := {x ∈ ωω : p rejects x} we see that by Claim 1,
A ⊆

⋃
pKp, by Claim 2 each Kp is a singleton, and moreover there are

only countably many p’s. Hence A is contained in a countable union of
singletons, so it is countable.

This completes the proof of the theorem.

5.2.8 Corollary. Det(Γ) implies that all sets in Γ have the perfect set property.

Proof. Let A be a set in Γ. Since A∗ is also in Γ, G∗(A) = G(A∗) is determined.
If Player I has a winning strategy in G∗(A) then A contains a perfect tree, and
if Player II has a winning strategy, then A is countable.
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5.3 The Baire property

In this section we study a property that has been important to topologists for a
long time. The game used in this context is the Banach-Mazur game introduced
in 5.1, and the method will be similar to the one from the previous section.

Recall the following topological definition: a set X ⊆ ωω is dense if it
intersects every non-empty open set. Of a similar nature are the following two
definitions:

5.3.1 Definition. Let X ⊆ ωω. We say that

1. X is nowhere dense if every basic open O(t) contains a basic open O(s) ⊆
O(t) such that O(s) ∩X = ∅,

2. X is meager if it is the union of countably many nowhere dense sets.

An important aspect of the Baire space is that open sets cannot be meager4

Meager sets are also called “of the first category” and, just as Lebesgue-null sets,
can be considered “very small” or negligible in a topological sense. Because
of this, it makes sense to talk about sets being equal “modulo meager”. In
particular, the following property is important:

5.3.2 Definition. A set X ⊆ ωω has the Baire property if it is equal to an open
set modulo meager, i.e., if there is an open set O such that (X −O) ∪ (O −X)
is meager.

Just as with the perfect set property, it is possible to show (using the Axiom
of Choice) that there are sets without the Baire property. We will prove that it
follows from determinacy (for boldface pointclasses Γ.)

The Banach-Mazur game G∗∗(A) was already stated in Definition 5.1.1.
The fact that we have continuous coding of the game depends on the following
Lemma, which we leave as an exercise (it is very similar to Lemma 5.2.5).

5.3.3 Lemma. Let ϕ be a bijection between ω and ω<ω−{〈〉}, and let f be the
function from ωω to ωω defined by

f(z) := ϕ(z(0))_ϕ(z(1))_ϕ(z(2))_ . . .

Then f is continuous.

Now it is clear that if A ∈ Γ then A∗∗ := f−1[A] ∈ Γ, and G∗∗(A) is
equivalent to G(A∗∗).

4This is the so-called Baire category theorem. Sometime a topological space is called “a
Baire space” if it satisfies this theorem, i.e., if open sets are not meager. In other spaces the
property may fail.

37



5.3.4 Theorem.

1. If Player II has a winning strategy in G∗∗(A) then A is meager.

2. If Player I has a winning strategy in G∗∗(A) then O(s)−A is meager for
some basic open O(s).

Proof.

1. Let τ be a winning strategy of Player II. For a position p := 〈s0, t0, . . . , sn, tn〉
write p∗ := s0

_t0
_ . . ._sn

_tn. For any position p and x ∈ ωω we say
that

• p is compatible with x if p∗ C x.

• p rejects x if it is compatible and maximally so, i.e., if for any sn+1,
the next position according to τ , i.e., the position p_ 〈sn+1, τ(p_ 〈sn+1〉)〉
is not compatible with x.

Claim 1. For every x ∈ A, there is a p which rejects x.

Proof. Just as in the proof of Theorem 5.2.7, if there were no p which
rejected x then there is a sequence y of moves by Player I such that
x = y ∗ τ ∈ A contradicting the assumption that τ is winning for Player
II.

Claim 2. For every p, the set Fp := {x : p rejects x} is nowhere dense.

Proof. Let O(s) be any basic open set. If p∗ 6C s then we can extend s
to some t such that any x ∈ O(t) is incompatible with p∗, and hence not
in Fp, i.e., O(t) ∩ Fp = ∅. So the only interesting case is if p∗ C s. Now
we use the following trick: suppose p = 〈s0, . . . , tn〉. Let sn+1 be the
sequence such that p∗_sn+1 = s. Now let tn+1 be τ ’s answer, i.e., let
tn+1 := τ(p_ 〈sn+1〉). Then let t := s_tn+1. It is clear that s C t and
hence O(t) ⊆ O(s). We claim that O(t) ∩ Fp = ∅ which is exactly what
we need.

Let x ∈ O(t), i.e., t C x. But if we look at the definition of rejection, it is
clear that p cannot reject x, because for sn+1 Player II’s response is tn+1

and the play p∗_ 〈sn+1, tn+1〉 = t is compatible with x. Thus x /∈ Fp.

Now the rest follows: by Claim 1, A ⊆
⋃
p Fp which, by Claim 2, is a

countable union of nowhere dense sets. Therefore A is meager.
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2. Now we assume that Player I has a winning strategy σ in G∗∗(A). Let s
be I’s first move according to the winning strategy, i.e., s := σ(〈〉). Then
we claim:

Claim 3. Player II has a winning strategy in the game G∗∗(O(s)−A)

Proof. Here we shall see the first instance of how a player can translate an
opponent’s winning strategy into his own. We will describe the strategy
informally.

Let s0 be I’s first move in the game G∗∗(O(s)−A).

• Case 1. s 6C s0. Then play any t0 such that s0
_t0 is incompatible

with s. After that, play anything whatsoever. It is clear that the
result of this game is some real x /∈ O(s), hence also not in O(s)−A,
and therefore is a win for Player II.

• Case 2. s C s0. Then let s′0 be such that s_s′0 = s0. Now Player II
does the following trick: to determine her strategy she “plays another
game on the side”, a so-called auxilliary game. This auxilliary game
is the original game G∗∗(A) in which Player I plays according to his
winning strategy σ. Player II will determine her moves based on the
moves of Player I in the auxilliary game.

The first move in the auxilliary game is s := σ(〈〉). Then Player II
plays s′0 as the next move of the auxilliary game. To that, in the
auxilliary game Player I responds by playing t0 := σ(〈s, s′0〉). Now
Player II switches back to the “real” game, and copies that t0 as her
first response to I’s “real” move, s0.

Next, in the “real” game she observes an s1 being played by Player I.
She then copies it as her next move in the auxilliary game, in which
I responds according to σ with t1 := σ(〈s, s′0, t0, s1〉). II copies t1 on
to the real game, and so it goes on. You can observe all this in the
following diagram, where the first game represents the real game and
the second the auxilliary one:

I: s0 s1 . . .
II: t0 t1

I: s = σ(〈〉) t0 = σ(〈s, s′0〉) t1 = σ(〈s, s′0, t0, s1〉)
II: s′0 s1 . . .

In the final play of the real game, the infinite play

x := s0
_t0

_s1
_t1

_ . . .
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is produced. But clearly x = s_s′0
_t0

_s1
_t1

_ . . . and that was a
play in the auxilliary game G∗∗(A) in which Player I used his winning
strategy σ. That means that x ∈ A. Therefore in the real game,
x /∈ O(s)−A which means that the strategy which Player II followed
was winning for her. And that completes the proof of Claim 3.

Now it follows directly from part 1 of the theorem that O(s)−A is meager,
which is exactly what we had to show.

After having proved the main theorem, we are close to the final result but
not done yet. In fact what we have proven is that for boldface pointclasses Γ,
if Det(Γ) holds then for every A ∈ Γ, either A is meager or O(s)−A is meager
for some basic open O(s), which is a kind of “weak” Baire property. We will
thus be done if we can prove the following final result.

5.3.5 Lemma. Let Γ be a boldface pointclass. If for every A ∈ Γ, either A is
meager or O(s) − A is meager for some O(s), then every A in Γ satisfies the
Baire property.

Proof. Pick A ∈ Γ. If A is meager we are done because A is equal to the open
set ∅ modulo a meager set, hence has the Baire property. Otherwise, let

O :=
⋃
{O(s) : O(s)−A is meager }

This is an open set, and by definition O−A is a countable union of meager sets,
hence it is meager. It remains to show that A−O is also meager. But since Γ
is closed under intersections with closed sets, A−O ∈ Γ. So if it is not meager,
then there is O(s) such that O(s)− (A−O) is meager. That implies

1. O(s)−A is meager, and

2. O(s) ∩O is meager.

But the first statement implies, by definition, that O(s) ⊆ O. Then the second
statement states that O(s) is meager, and we know that that is false in the
Baire space. So we conclude that A − O is meager and so A has the Baire
property.

Combining everything in this section we get the following Corollary for bold-
face pointclasses Γ.

5.3.6 Corollary. Det(Γ) implies that every set in Γ has the Baire property.
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5.4 Flip sets

In this section we investigate another non-constructive object, the so-called “flip
sets”. For the time being we focus on the space 2ω of all infinite sequences of
0’s and 1’s, rather than the Baire space. As 2ω is a closed subspace of ωω, it is
also a topological space with the subspace topology inherited from ωω, and the
topology behaves exactly the same way (basic open sets are O(t) := {x ∈ 2ω :
t C x}).

5.4.1 Definition. An X ⊆ 2ω is called a flip set if for all x, y ∈ 2ω, if x and y
differ by exactly one digit, i.e., ∃ ! n(x(n) 6= y(n)), then

x ∈ X ⇐⇒ y /∈ X

Flip sets can be visualized by imagining an infinite sequence of light-switches
such that flipping each switch turns the light on or off (in X or not in X). It is
clear that if x and y differ by an even number of digits then x ∈ X ⇐⇒ y ∈ X
whereas if they differ by an odd number then x ∈ X ⇐⇒ y /∈ X. If x and y
differ by an infinite number of digits, we do not know what happens.

Although this gives us a very nice description of flip sets, it is not clear
whether such sets exist. Indeed, if they do exist, then they are pathological
in the sense of the space 2ω. For example, it can be shown that flip sets are
not Lebesgue measurable and do not have the Baire property. Flip sets can be
constructed using the Axiom of Choice, and in this section we show that Det(Γ)
implies that there are no flip sets in Γ.

We consider a version of the Banach-Mazur game which is exactly as in
Definition 5.1.1 but with I and II playing non-empty sequences of 0’s and 1’s.
For a set X ⊆ 2ω, we denote the game by the same symbol G∗∗(X). The fact
that this can be coded using a continuous function is analogous to the previous
case and we leave the details to the reader.

The way to prove that Det(Γ) implies that there are not flip sets in Γ is
not by a direct application of determinacy, but rather by a sequence of Lemmas
which, assuming a flip set exists in Γ, lead to absurdity.

5.4.2 Lemma. Let X be a flip set.

1. If I has a winning strategy in G∗∗(X) then he also has a winning strategy
in G∗∗(2ω −X).

2. If II has a winning strategy in G∗∗(X) then she also has a winning strategy
in G∗∗(2ω −X).

Proof. Parts 1 and 2 are analogous so let us only do 1. If σ is a winning strategy
for Player I in G∗∗(X) then let σ′ be as follows:

• The first move σ′(〈〉) is any sequence of the same length as σ(〈〉) and
differs from it by exactly one digit.
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• The next moves are played according to σ, pretending that the first move
was σ(〈〉) and not σ′(〈〉).

It is clear that for any sequence y of II’s moves, σ ∗ y and σ′ ∗ y differ by exactly
one digit. Since σ ∗ y ∈ X and X is a flip set, σ′ ∗ y /∈ X, hence σ′ is winning
for I in G∗∗(2ω −X).

5.4.3 Lemma. Let X be a flip set. If II has a winning strategy in G∗∗(X) then
I has a winning strategy in G∗∗(2ω −X).

Proof. Let τ be II’s winning strategy in G∗∗(X). Player I does the following:
first he play an arbitrary s. Player II will answer with some t. Now I starts
playing an auxilliary version of G∗∗(X) on the side, in which II uses τ . There
he plays s_t, and let s0 be τ ’s answer in the auxilliary game. He copies s0 as
the next move in the real game. Player II will answer with some t0. I copies t0
on to the auxilliary game, etc.

G∗∗(2ω −X) :
I: s s0 s1

II: t t0 . . .

G∗∗(X) :
I: s_t t0 t1

II: s0 s1 . . .

Now if x = s_t_s0
_t0

_ . . . is the result of the game, it is the same as the result
of the auxilliary game which was played according to τ . As τ was winning, it
follows that x /∈ X and hence the strategy we just defined is winning for I in
G∗∗(2ω −X).

5.4.4 Lemma. Let X be a flip set. If I has a winning strategy in G∗∗(X) then
II has a winning strategy in G∗∗(2ω −X).

Proof. This is slightly more involved then the previous two Lemmas. Let σ be
winning for I in G∗∗(X). Player II will, again, play two games: the main one
G∗∗(X), and an auxilliary G∗∗(X) according to σ. Let Player I’s first move in
the real game be s0. Let s := σ(〈〉) be I’s first move in the auxilliary game.
First, consider the case

• |s0| < |s|.

Then in the real game, let II play t0, such that |s0_t0| = |s| and s0
_t0 differs

from s on an even number of digits. Clearly II can always find such t0. Then
let s1 be I’s next move in the real game. Player II copies it to the auxilliary
game, in which I replies with some t1, which II copies on to the real game, etc.

G∗∗(2ω −X) :
I: s0 s1 s2

II: t0 t1 . . .

G∗∗(X) :
I: s t1 . . .

II: s1 s2
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Let x := s0
_t0

_s1
_t1

_ . . . be the result of the main game, and y := s_s1
_t1

_ . . .
the result of the auxilliary game. Then y ∈ X, and since by construction x and
y differ by an even number of digits and X is a flip set, x ∈ X follows, i.e., the
strategy we described is winning for II in G∗∗(2ω −X).

Now consider the case that

• |s| ≤ |s0|

This time Player II first plays any t in the auxilliary game such that |s_t| > |s0|,
and finds s′ to be Player I’s reply in the auxilliary game. Now clearly |s_t_t′| >
|s0| and she can play a t0 in the real game such that |s0_t0| = |s_t_t′| and
s0
_t0 and s_t_t′ differ on an even number of digits. After that she proceeds

as before, i.e., if s1 is the next move of I in the real game, she copies it into the
auxilliary game, etc.

G∗∗(2ω −X) :
I: s0 s1 s2

II: t0 t1 . . .

G∗∗(X) :
I: s t′ t1 . . .

II: t s1 s2

Now x = s0
_t0

_s1
_t1

_ . . . and y = s_t_t′_s1
_t1

_ . . . differ by an even
number of digits so the result follows.

5.4.5 Theorem. If Det(Γ) then there are no flip sets in Γ.

Proof. Suppose, towards contradiction, that there exists a flip set X ∈ Γ. Then

• I has a winning strategy in G∗∗(X) =⇒ I has a winning strategy in
G∗∗(2ω −X) =⇒ II has a winning strategy in G∗∗(X), and

• II has a winning strategy in G∗∗(X) =⇒ II has a winning strategy in
G∗∗(2ω −X) =⇒ I has a winning strategy in G∗∗(X).

Both situations are clearly absurd, from which we conclude that there cannot
be a flip set in Γ.

5.5 Wadge reducibility

Our last application of infinite games relates to Wadge reducibility, a large area
of research of which we will only present a small part. The study of it started
with the work of William Wadge (pronounced “wage”) [Wadge 1983].

Since we will deal with complements of sets a lot in this section, it will be
convenient to use the notation A := ωω −A.
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5.5.1 Definition. Let A,B ⊆ ωω. We say that A is Wadge reducible to B,
notation A ≤W B, if there is a continuous function f such that for all x:

x ∈ A ⇐⇒ f(x) ∈ B

Clearly, A ≤W B if and only if A ≤W B. Also, ≤W is reflexive and transitive,
though in general not antisymmetric. Such relations are sometimes called pre-
orders. We can make it into a partial order by taking equivalence classes: say A
is Wadge equivalent to B, denoted by A ≡W B, if A ≤W B and B ≤W A. Then
let [A]W denote the equivalence class of A, i.e., [A]W := {B | A ≡W B}. We
can lift the ordering on to the equivalence classes: [A]W ≤W [B]W if and only if
A ≤W B, which is well-defined as can easily be verified. The equivalence classes
[A]W are called Wadge degrees and the relation ≤W on the Wadge degrees is a
partial order.

As usual, we define the strict Wadge ordering by setting

A <W B ⇐⇒ A ≤W B and B 6≤W A

Without determinacy, not much more can be said about the Wadge order.
However, if we limit our attention on sets in a pointclass Γ satisfying Det(Γ),
the picture changes entirely and a rich structure of the Wadge degrees emerges.
Because of coding problems, in this section we will need additional requirements
on Γ, namely that it be closed under intersections and complements, i.e., if
A,B ∈ Γ then A ∩ B ∈ Γ and if A ∈ Γ then A ∈ Γ. The Borel sets, and all
the ∆0

n and ∆1
n complexity classes satisfy this property, as well as the class of

projective sets.

5.5.2 Definition. Let A,B be sets. The Wadge game GW (A,B) is played as
follows: Players I and II choose natural numbers:

I: x0 x1 . . .
II: y0 y1 . . .

If x = 〈x0, x1, . . . 〉 and y = 〈y0, y1, . . . 〉, then Player II wins GW (A,B) if and
only if

x ∈ A ⇐⇒ y ∈ B

To see that this game can be coded by a pay-off set in the same pointclass,
consider the two functions f and g defined by

• f(x)(n) := x(2n) and

• g(x)(n) := x(2n+ 1).

It is straightforward to verify that f and g are continuous. Now note that if z
is the outcome of the Wadge game, then Player I wins GW (A,B) if and only if
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f(z) ∈ A ⇐⇒ g(z) /∈ B. From this it follows that GW (A,B) is equivalent to
the game

G((f−1[A]− g−1[B]) ∪ (g−1[A]− f−1[B]))

and by our closure assumptions on Γ, this set is also in Γ, so our coding is
adequate.

The main result is the following Theorem due to William Wadge.

5.5.3 Theorem. (Wadge, 1972) Let A,B ⊆ ωω.

1. If Player II has a winning strategy in GW (A,B) then A ≤W B.

2. If Player I has a winning strategy in GW (A,B) then B ≤W A.

Proof.

1. Let τ be a winning strategy of II. For every x played by Player I, by
definition of the winning condition, x ∈ A ⇐⇒ g(x ∗ τ) ∈ B. But using
the same methods as we have done many times before, it is easy to see that
the function mapping x to x ∗ τ is continuous. Similarly g is continuous,
and so the composition of these two functions is a continuous reduction
from A to B, so A ≤W B.

2. Analogously, if σ is a winning strategy of I then for every y we have
f(σ ∗ y) ∈ A ⇐⇒ y /∈ B, and so again we have a continuous reduction
from B to A, or equivalently from B to A, so B ≤W A.

Therefore, if we limit our attention to sets in Γ and assume Det(Γ), the
Wadge order satisfies the property that for all A,B, either A ≤W B or B ≤W A.
This immediately has many implications for the order. For example,

5.5.4 Lemma. If A <W B then

1. A ≤W B,

2. B 6≤W A,

3. A ≤W B,

4. B 6≤W A.

Proof. 1 and 2 are the definition, and 3 follows from 2 by the above Theorem.
To see 4, suppose B ≤W A. Then by 1 we have B ≤W A ≤W B and by the
negation of 4 again, B ≤W A ≤W B ≤W A. This contradicts 2.

A set A, or its corresponding Wadge degree [A]W , is called self-dual if A ≡W
A. Our characterization tells us the following:

5.5.5 Lemma. If A is self-dual, then for any B, either B ≤W A or A ≤W B.

Proof. If A 6≤W B then B ≤ A ≤W A.
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We end this section, and with it the course, on the following involved proof
of the Martin-Monk Theorem.

5.5.6 Theorem. (Martin-Monk) If Det(Γ) then the relation <W restricted to
sets in Γ is well-founded.

Proof. We must show that there are no infinite descending <W -chains of sets in
Γ. So, towards contradiction, suppose that {An : n ∈ ω} is an infinite collection
of sets in Γ which forms an infinite descending <W -chain:

· · · <W A3 <W A2 <W A1 <W A0

Since for each n, An+1 <W An, by Lemma 5.5.4 (2) and (4), both An 6≤W
An+1 and An 6≤W An+1 hold. Therefore by Theorem 5.5.3 Player II cannot
have a winning strategy in the games GW (An, An+1) and GW (An, An+1). By
determinacy, Player I must then have a winning strategy. We will call these
strategies σ0

n and σ1
n, respectively.

We now introduce the following abbreviation:

G0
n := GW (An, An+1)

G1
n := GW (An, An+1)

Now to any infinite sequence of 0’s and 1’s, i.e., any x ∈ 2ω, we can associate
an infinite sequence of Wadge games〈

G
x(0)
0 , G

x(1)
1 , G

x(2)
2 , . . .

〉
played according to I’s winning strategies〈

σ
x(0)
0 , σ

x(1)
1 , σ

x(2)
2 , . . .

〉
Now we fix some particular x ∈ 2ω, and Player II is going to play all these

infinite Wadge games simultaneously. In each game G
x(n)
n Player I follows his

winning strategy σ
x(n)
n , whereas Player II copies I’s moves from the next game

G
x(n+1)
n+1 . To make this possible, she follows the following diagonal procedure:

• In the first game G
x(0)
0 , let ax0(0) be the first move of Player I, according

to σ
x(0)
0 . The superscript x refers to the infinite sequence we fixed at the

start and the subscript 0 refers to the 0-th game.

• To play the next move in the first game, Player II needs information from

the second game. Let ax1(0) be Player I’s first move in the game G
x(1)
1 ,

according to σ
x(1)
1 . Player II copies that move on to the first game.

• Next, Player I plays ax0(1) in the first game. To reply to that, Player II
needs information from the second game. There, ax1(0) has been played,
and Player II would like to copy information from the next game.
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• So let ax2(0) be Player I’s first move in the game G
x(2)
2 , according to σ

x(2)
2 .

Player II copies that on to the second game. Now ax1(1) is I’s next move
in the second game, which Player II copies on to the first game.

• Etc.

All of this is best represented in the following diagram:

G
x(0)
0 I: ax0(0) ax0(1) ax0(2) . . . · · · −→ ax0

II: ax1(0) ax1(1) . . . · · · −→ ax1

G
x(1)
1 I: ax1(0)

;C�����
�����

ax1(1)

9A|||||
|||||

. . . · · · −→ ax1

II: ax2(0) . . . · · · −→ ax2

G
x(2)
2 I: ax2(0)

;C�����
�����

. . . · · · −→ ax2

II: . . . · · · −→ ax3

G
x(3)
3 I: . . . · · · −→ ax3

II: · · · −→ ax4

Using this procedure the two players are able to fill in the entire table. For each

game G
x(n)
n let axn be the outcome of Player I’s moves, and axn+1 be the outcome

of Player II’s moves. Note that the same infinite sequence axn+1 is also the result

of I’s moves in the next game, G
x(n+1)
n+1 .

Since each game is won by Player I, the definition of the Wadge game implies
that for each n:

x(n) = 0 =⇒ (axn ∈ An ↔ axn+1 /∈ An+1)
x(n) = 1 =⇒ (axn ∈ An ↔ axn+1 ∈ An+1)

(∗)

Now we compare the procedure described above for different x, y ∈ 2ω.

Claim 1. If ∀n ≥ m (x(n) = y(n)) then ∀n ≥ m (axn = ayn).

Proof. Simply note that the values of axn and ayn depend only on games G
x(n′)
n′

and G
y(n′)
n′ for n′ ≥ n. Therefore, if x(n′) and y(n′) are identical, so are the

corresponding games and so are axn and ayn.
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Claim 2. Let m be such that ∀n ≥ m (x(n) = y(n)). Then axn ∈ An ↔ ayn /∈
An.

Proof.

• Case 1: x(n) = 0 and y(n) = 1. By condition (∗) above it follows that

axn ∈ An ↔ axn+1 /∈ An+1

ayn ∈ An ↔ ayn+1 ∈ An+1

Since by Claim 1, axn+1 = ayn+1, it follows that

axn ∈ An ↔ axn+1 /∈ An+1 ↔ ayn+1 /∈ An+1 ↔ ayn /∈ An

• Case 2: x(n) = 1 and y(n) = 0. Now (∗) implies that

axn ∈ An ↔ axn+1 ∈ An+1

ayn ∈ An ↔ ayn+1 /∈ An+1

Again by Claim 1 it follows that

axn ∈ An ↔ axn+1 ∈ An+1 ↔ ayn+1 ∈ An+1 ↔ ayn /∈ An

Claim 3. Let x and y be such that there is a unique n with x(n) 6= y(n). Then
ax0 ∈ A0 ↔ ay0 /∈ A0.

Proof. By Claim 2 we know that axn ∈ An ↔ ayn /∈ An. Since x(n−1) = y(n−1)
we again have two cases:

• Case 1: x(n− 1) = y(n− 1) = 0. Then by (∗)

axn−1 ∈ An−1 ↔ axn /∈ An
ayn−1 ∈ An−1 ↔ ayn /∈ An

and therefore axn−1 ∈ An−1 ↔ ayn−1 /∈ An−1.

• Case 2: x(n− 1) = y(n− 1) = 1. Then by (∗) we have

axn−1 ∈ An−1 ↔ axn ∈ An
ayn−1 ∈ An−1 ↔ ayn ∈ An

and therefore again axn−1 ∈ An−1 ↔ ayn−1 /∈ An−1.

Now we go to the (n − 2)-th level. Since again x(n − 2) = y(n − 2) we get, by
an application of (∗), that axn−2 ∈ An−2 ↔ ayn−2 /∈ An−2. We go on like this
until we reach the 0-th level, in which case we get ax0 ∈ A0 ↔ ay0 /∈ A0, as
required.
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Now define
X := {x ∈ 2ω : ax0 ∈ A0}

It is not hard to see that the map x 7−→ ax0 is continuous: if we fix the first n

values of ax0 , we see that they only depend on the first n games {Gx(i)i : i ≤ n}.
Therefore X is the continuous pre-image of A0 and therefore X ∈ Γ. But now
Claim 3 says that X is a flip set, contradicting Theorem 5.4.5.

5.6 Exercises

1. Let X be a subset of a topological space. A point x ∈ X is called an
isolated point of X if there is an open set O such that O ∩ X = {x}.
Prove that a tree T is perfect if and only if [T ] has no isolated points.

2. Adapt the proof of Theorem 2.4.3 to prove, using AC, that there is a set
that does not satisfy the Perfect Set Property.

3. (a) Show that for any set A /∈ {∅, ωω}, we have both ∅ <W A and
ωω <W A.

(b) Show that ∅ 6≤W ωω and ωω 6≤W ∅. Conclude that [∅]W = {∅} and
[ωω]W = {ωω}.

(c) If (P,≤) is a partial order, then a subset A ⊆ P is called an antichain
if ∀p, q ∈ A (p 6≤ q ∧ q 6≤ p). Show that in the partial order (Γ,≤W ),
assuming Det(Γ), antichains have size at most 2.
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